CHEN **Molecular Models Report Sheet:** 110 _____ SEC # ____ LOCKER # _ LAST NAME: UNIVERSITY **Department of Chemistry** FIRST NAME:

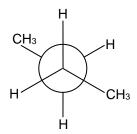
- Go to the website www.molview.org
- At the search window in the upper-left, enter in the compound name for questions below. In all cases, you can just copy/paste the name directly from this PDF file into the website.
- Rotate the 3D model onscreen if necessary. Answer the **questions** on the report sheet. All blue-purple shaded boxes are places to write answers or checkmark (☑) choices.

Part 1 – Bond Rotation and Conformers

1. Ethane Select the correct name for each conformation. Check (\square) the conformation of lower energy. Which conformation did the website generate?

2. 1,2-Dichloroethane

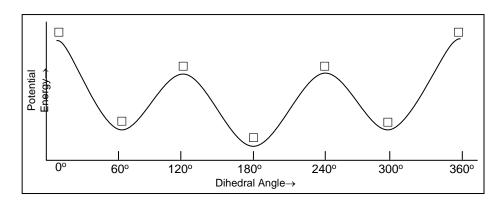
Complete the three Newman projections for the staggered conformations by writing in the **second chlorine atoms** in the correct spot. **Check** (\boxtimes) **the conformation** of lower energy.


anti

gauche

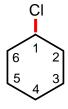
Which conformation did the website generate, anti or gauche?

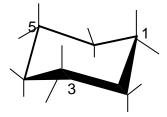
What colour spheres did the website use to represent chlorine atoms?


3. **Butane** The website generates a specific conformer. Rotate the 3D model to look straight down the C-C bond between carbon 2 and 3, as shown in the diagram below. Fill out the blank with the **correct name for this conformation**. The four choices are:

- anti
- gauche
- eclipsed
- staggered

Conformation is:


Check (\square) the position(s) where the above conformation would be on this energy curve:

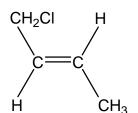


- 5. Cyclohexane Rotate the 3D model online.

 Is this the boat or chair conformation? ______
- 6. Now rotate the 3D model online so that 3 hydrogens are pointing up in axial positions and 3 hydrogens are pointing axially down. Notice how they are located around the carbon-ring in alternating up-down positions. This is due to the sp3 hybridization. In a similar manner, you should see 6 hydogrens located in equatorial positions around the ring, alternating up and down.
- 7. Chlorocyclohexane The website will show the top-down diagram given below at left. Rotate the model into an edge-on position, with the chlorine-atom **above** the plane of the carbon ring. Show on the edge-on diagram where the chlorine is located.

Is this an axial or equatorial postion?

For the top-down diagram, should the website use a "dash" or "wedge" to show the correct spatial-orientation of the C-Cl bond (shown in red here):



 $\Box E$

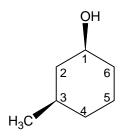
or

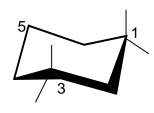
Part 2 - Geometrical Isomerism

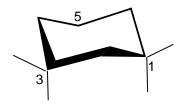
- 1. **Check (☑) the correct name** of the compound drawn below. You can use the website if you want, but it is not required here.
 - \square 1-chloro-*cis*-2-butene \square 1-chloro-*trans*-2-butene

Specify the configuration (**E or Z**) of the compound: _____

Is it possible to convert this to the other isomer without breaking any bonds? (yes or no)


3. **Check (☑)** whether the geometry of each alkene is E or Z. **First**, determine which group (or atom) on each C of the double bond has the higher priority. Show this by **clicking on 2 of the 4 round buttons** for **each** molecule. If you want to use the website, the names are given in blue.


2-isopropyl-2-butene


$$C = C$$
 $C + C$
 $C + C$
 $C + C$
 $C + C$
 $C + C$

$$CH_2-CH_3$$
 $C=C$
 CH_3

5. **cis-3-methylcyclohexanol** The diagram at left below matches the website. Complete the two chair conformations, **showing the position of the hydroxyl and methyl groups only**. Do **not** include the hydrogens. Are the groups in **axial or equatorial** positions? **Fill in the blanks**.

-OH and -CH₃ located in: _____ positions

_____ positions

axial or equatorial

Part 3 – Optical Isomerism

1. Bromochloromethane

Does the online model have a plane of symmetry? (yes or no)

CH₂CIBr

Would a second molecule of CH₂ClBr be superimposable on the first? (yes or no) _____

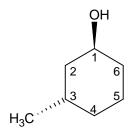
Is CH₂ClBr chiral or achiral?

2. Bromochlorofluoromethane CHCIBrF

The online model will likely be positioned with the C-H bond going behind the screen, and the Br, Cl, and F atoms coming towards the viewer.

Is the online model showing the **R** or **S** enantiomer?

Check (☑**)** which one diagram shown below matches the online model:


Would a second molecule of CHClBrF be superimposable on the first? (yes or no)

Part 3 – Optical Isomerism – continues on the next page.

Use models of the following compounds and then complete the table:

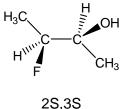
		Sketch of the Mirror Image	je ble?	of of	iral
Compound	Online Model Rotate it to match the	Fill out the diagrams below showing the mirror images. The red line is the mirror plane.	Is Mirror Image Superimposable? (<i>yes/no</i>)	Internal Plane Symmetry? (yes/no)	Number of Chiral Centres
2.1 Chroine	diagram shown below	,	S S	7 S S	20
3.1 Glycine COOH means:	H C///COOH NH ₂	IIIIIIIC			
	The model shows how planar this molecule is.	This compound is achiral.			
3.2 Alanine This compound is chiral.	H ₃ C COOH	nnno-C			
	Is this R or S?	Is this R or S?			
4.1 cis-1,2-dichloro-cyclopropane	3 CI 1	1 2 3			
	Is carbon atom 1 R or S ?	Is carbon atom 1 R or S ?			
4.2 trans-1,2- dichloro- cyclopropane	3 CI	1 2 3			
	Is carbon atom 1 R or S ?	Is carbon atom 1 R or S ?			

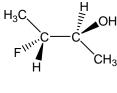
5. trans-3-methylcyclohexanol

How many chiral centres does it have?

Is there a plane of symmetry? (yes/no)

What is the R/S configuration at carbon 1? _____


6. 3-fluorobutan-2-ol


Fill in the blanks below:

The online model will likely match stereoisomer (d) shown below. Answer that one first.

In all diagrams, the -OH group is attached to carbon 2 and the -F group is on carbon 3.

Show the configuration (R or S) at carbons 2 & 3 on stereoisomers (b), (c) & (d) below:

Refer to the bottom of page 172 of the lab manual for these questions:

Give the letter (b, c or d) of one enantiomer of conformer (a):

Give the letters (a, b, d) of two diastereomers of conformer (c):

Please save this PDF and submit to your lab instructor as per their instructions.