LAST NAME: ___ _____ SEC # ____ LOCKER # ____ **Department of Chemistry** DATE: _____ FIRST NAME: _ Name of Partner: _____ **RAW DATA** record all data in blue or black ink only and in the proper format. report all temperatures in both tables to Part 1 Part 2 Part 3 2 decimal places. initial temperature of calorimeter + contents Tinit: °C °C °C concentration of 1.799 M NA NA standardized HCI: Mg: MgO: mass of empty vessel plus...→ NA mass of vessel after transfer: **RESULTS** Part 1 Part 2 Part 3 mass of solid Mg or MgO NA delivered to calorimeter: g g Use the plotted thermograms to graphically determine T_{inst} . Then calculate ΔT for each Part. extrapolated temperature of calorimeter + contents Tinst: °C °C $^{\circ}C$

Κ

Thermochemistry

 ΔT :

temperature change

Report Sheet:

K

K

CHEM 111 / 154

Part 1	_	Calorimeter	Calibration
ı aıtı		Calvilletei	Calibration

(Report your answer to 4 significant figures.)

	mol
	11101

Calculate and report the calorimeter constant:

(Report your answer to at least 4 significant figures and carry this through to the calculations in Parts 2 & 3.)

CALORIMETER CONSTANT = ____kJ/K

Part 2 - Reaction of Magnesium with Acid

Calculate number of moles of Mg: use the correct number of significant figures for all answer below

_____ mol

Calculate and report the value of ΔH for this reaction:

 $Mg(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$

 $\Delta H_1 = kJ/mol$

Part 3 - Reaction of Magnesium Oxide with Acid

Calculate number of moles of MgO:

____ mol

Calculate and report the value of ΔH for this reaction:

 $MgO(s) + 2H^+(aq) \xrightarrow{r} Mg^{2+}(aq) + H_2O(l)$

 $\Delta H_2 =$ kJ/mol

$$Mg(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2(g)$$

 ΔH_1 (exp) _____ kJ/mol

$$MgO(s) + 2H^+(aq) \rightarrow Mg^{2+}(aq) + H_2O(l)$$

 ΔH_2 (exp) _____ kJ/mol

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$

ΔH₃ (*lit*) _____ kJ/mol

Use Hess's Law with the above ΔH values to calculate an <u>experimental value</u> for the enthalpy of formation of magnesium oxide:

experimental $\Delta H_f(MgO)$ _____ kJ/mol

Report the **literature value** for $\Delta H_f(MgO)$ and calculate the **% difference**:

literature ΔH_f(MgO) ______kJ/mol

percent difference ______ %