Report Sheet: Arsenic Toxic Levels CHEM 110 / 154 CAPILANO UNIVERSITY Department of Chemistry FIRST NAME: DATE:

Record all data at the appropriate location on this report sheet. Do not drop "leading zeroes".

Raw Data

Report all masses as given in the Virtual Lab software (typically 6 significant figures).

Volume of AgNO₃ added (mL)	Mass Ag₃AsO₄ obtained (g)			
only add as needed	0.01 M Na₃AsO ₄ Standard	Sample #1 analyte (sample <u>A</u> on graph)	Sample #2 analyte (sample <u>C</u> on graph)	
1.00				
2.00				
3.00				
4.00				
5.00				
6.00				

Samples B and D

As noted in the lab manual (Treatment of Results section) Samples B and D were collected downstream from Samples A and C, respectively, and are given in the online Raw Data as a percent of A and C. Record below your uniquely-assigned percents and then use these, along with your mass values for A and C, to calculate the mass of Ag₃AsO₄ obtained for Samples B and D. Report to 6 significant figures.

Sample	Percent of:	Mass Ag₃AsO₄ obtained (g)
# B	of Sample A	=
# D	of Sample C	=

	2
Calculations:	Part One
From the mass, calculate the moles of Ag₃AsO₄ precipitated in the flask of N Give your answer to <u>5</u> significant figures:	la₃AsO₄ standard.
	mol Ag₃AsO₄
—————————————————————————————————————	
of arsenate, AsO₄³-, initially present in the flask. Give your answer to <u>5</u> signif	
	mol AsO ₄ 3-
Calculate, to <u>2</u> decimal places, the percent of AsO ₄ ³⁻ that was precipitated out	of solution:
	%
Is gravimetric analysis of AsO₄³- with AgNO₃ a reliable method? Refer to t	the Introduction in
the lab manual. Checkmark your choice: YES NO	
Calculations:	Part Two

Calculate, to $\underline{\mathbf{0}}$ decimal places, the Arsenic Levels for each sample, as discussed in the lab manual. Show the calculation for Sample A on the next page. Also, record below your uniquely-assigned "distance-from-mine" values from your online version of the Raw Data. This table below will be needed to create your graph.

sample	Distance from Mine (km) *	Calculated As Level (mg / L)
A	0	
В		
С		
D		

^{*} from website

	Arsenic Level Calculation	n for Sample A:	Show all	vour work: fin	nal answer to	0 decimals
--	----------------------------------	-----------------	----------	----------------	---------------	------------

	mg As / L		
Calculations:	using the Graph		
Record here the equation for the line-of-best-fit. Give the slope to 2 decimal places and the y-intercept to 0 decimal places :			
y = x +			
slope	intercept		
Record the statistical R ² value: (a value of 1.0 means a	perfect fit)		
Checkmark the software used to prepare the graph: \Box MS-Excel \Box	Google Sheets		
If your Arsenic Level for Sample D is above the MCL of 0.01 mg / L, use the to calculate the "minimum safe distance" from the mine, in units of kilome	•		
	km		
A cabin on private property is located 1 km downstream from where Sample D was collected. You can't access the property to take a reading from the river, but the home-owner should be notified if they are in danger. Calculate the predicted arsenic level, to 0 decimal places.			
Distance of cabin from mine using my assigned Sample D data: k	m		
Predicted Arsenic Level:			
Please staple your graph to the back of this lab report sheet before of	coming to the lab.		